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Contraction Mapping Principle

Recall from the previous lectures, we learnt about:

Definition 1
A map T : (X, d) → (X, d) is a contraction if there exists a constant γ ∈ (0, 1) such that

d(Tx, Ty) ≤ γd(x, y)

for all x, y ∈ X.

Theorem 1 (Contraction mapping principle)
Every contraction in a complete metric space admits a unique fixed point.

In this tutorial, we prove the following corollary:

Corollary 1 (Source: Functional Analysis by S. Kesavan P.55)
Let (X, d) be a complete metric space and let T : (X, d) → (X, d) be a map such that for some positive
integer n, the map Tn = T ◦ · · · ◦ T : (X, d) → (X, d) is a contraction. Then T has a unique fixed
point.

Proof of Corollary 1:
Denote the fixed point of Tn by x∗, then

Tx∗ = TTnx∗ = Tn+1x∗ = TnTx∗

that means Tx∗ is also a fixed point of Tn. However the contraction mapping principle tells us
that the fixed point x∗ is unique. This implies Tx∗ = x∗.

Uniqueness follows from the fact that any fixed point x∗ of T is also a fixed point of Tn,
because

Tnx∗ = Tn−1Tx∗ = Tn−1x∗ = · · · = Tx∗ = x∗

Thus T has unique fixed point.
!
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Exercise 1

Show that every continuous function f : [0, 1] → [0, 1] has a fixed point.

Solution:

If f (0) = 0 or f (1) = 1, then we are done. Hence, we assume f (0) > 0 and f (1) < 1.
Define g : [0, 1] → R by g(x) = f (x)− x. Then g(0) = f (0) > 0 and g(1) = f (1)− 1 < 0.

Since f is continuous, then g is continuous. By the intermediate value theorem, there exists
a c ∈ [0, 1] such that

g(c) = f (c)− c = 0 =⇒ f (c) = c

thus, f has a fixed point
!
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Exercise 2

(Source: Previous HW problem of MATH3060)
Fixα ∈ [0, 1), for each x0 ∈ [0, 1], consider the iteration sequence

xn = αxn−1(1 − xn−1), ∀n ∈ N

(a) Show that {xn} ⊆ [0, 1]

(b) Show that lim
n→∞

xn = 0

Solution:

We first show that {xn} ⊆ [0, 1]. Define T : [0, 1] → R, by Tx = αx(1 − x). Then the iter-
ation sequence can be written as

xn = Txn−1

Then it is equivalent to show that T([0, 1]) ⊂ [0, 1].

Since T is smooth, we differentiate T and get T′(x) = α(1 − 2x) which implies that T at-
tains its maximum at x = 1

2 , and the value is T( 1
2 ) =

α
4 < 1 sinceα < 1. Moreover, it is obvious

that Tx ≥ 0 for all x ∈ [0, 1]. Thus, T([0, 1]) ⊂ [0, 1]. It follows that xn = Tnx0 ∈ [0, 1] for all n.

First of all we know that T(0) = 0. Then we check that T is a contraction

|Tx − Ty| = |T′(c)||x − y| ≤ M|x − y|

where M := max
x∈[0,1]

|T′(x)|, which can be calculated to beα < 1. Hence for all x, y ∈ [0, 1], T is a

contraction. Then the contraction mapping principle tell us that the fixed point x = 0 is unique.

Now suppose that xn → L as n → ∞, then

L = lim
n→∞

xn = T( lim
n→∞

xn−1) = T(L) =⇒ L = 0

by the contraction mapping principle.
!
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Exercise 3

(Source: Ordinary Differential Equations, Lecture Notes of MATH4051 at HKUST, by Prof
Frederick Fong.)

Define g(x) = cos x − 1
3 cos3 x where x ∈ [0, π

3 ]. Consider the iteration sequence
!
"

#
x0 = 0

xn = g(xn−1)
, ∀n ≥ 1

Show that g(x) maps [0, π
3 ] to [0, π

3 ] and that it satisfies the contraction inequality. Hence,
show that the iteration sequence xn converges to a limit L which is the root of the equation
x = cos x − 1

3 cos3 x.

Solution:
Since g(x) is smooth, we can consider its derivative:

g′(x) = − sin x − cos2 x(− sin x)

= − sin x(1 − cos2 x)

= − sin3 x

then one can see that g′(x) ≤ 0 for all x ∈ [0, π
3 ], hence it is decreasing.

Note that g(0) = 1 − 1
3 = 2

3 < π
3 , and that g(π3 ) =

1
2 − 1

24 = 11
24 > 0. Together with g the

fact that is decreasing, we see that g([0, π
3 ]) ⊂ [0, π

3 ].

Then for all x, y ∈ [0, π
3 ], by the mean value theorem, one can see that

|g(x)− g(y)| = |g′(c)||x − y| ≤ M|x − y|

where M := max
x∈[0, π3 ]

|g′(x)|. On [0, π
3 ], we have M = | sin3(π3 )| =

3
√

3
8 < 1

Now consider the iteration sequence xn = g(xn−1) , we have

|xn+1 − xn| = |g(xn)− g(xn−1)|
≤ M|xn − xn−1|
≤ M2|xn−1 − xn−2|
≤ Mn−1|x2 − x1|

Then we see that
∞

∑
n=0

|xn+1 − xn| ≤
∞

∑
n=0

Mn−1|x2 − x1|

converges, since the RHS is a geometric series and M < 1. Then the series

∞

∑
n=0

(xn+1 − xn)

converges absolutely. Hence xN := x1 + ∑N−1
n=1 (xn+1 − xn) converges as N → ∞.
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Suppose that xn → L as n → ∞, then

L = lim
n→∞

xn = g( lim
n→∞

xn) = g(L)

implies that L is a root of the equation x = g(x).
!

Possible Reference

Instead of giving you another exercise, the following books contain many examples in which
you can take a look at them if you are interested:

• Real Analysis by Royden and Fitzpatrick

• Metric Spaces by Copson
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